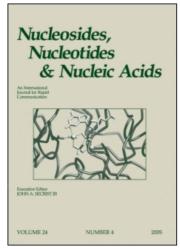
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Oligonucleotides With Purine Nitrogen-7 as Glycosylation Site

Frank Seela^a; Peter Leonard^a

^a Universität Osnabrück Barbarastrasse 7, Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Osnabrück, Germany

To cite this Article Seela, Frank and Leonard, Peter (1997) 'Oligonucleotides With Purine Nitrogen-7 as Glycosylation Site', Nucleosides, Nucleotides and Nucleic Acids, 16: 5,669-674

To link to this Article: DOI: 10.1080/07328319708002932 URL: http://dx.doi.org/10.1080/07328319708002932

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

OLIGONUCLEOTIDES WITH PURINE NITROGEN-7 AS GLYCOSYLATION SITE

Frank Seela* and Peter Leonard

Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany

ABSTRACT: The synthesis of phosphoramidites (2 and 3) derived from hypoxanthine and isoguanine N^7 -2'-deoxyribonucleosides is described. Solid-phase synthesis furnishes oligonucleotides containing N^7 -glycosylated purines. New base pairs between purine N^7 - and N^9 -nucleosides are proposed.

The base pairing of nucleic acids is controlled by the donor/acceptor pattern between purine and pyrimidine bases as well as by the structural, configurational, and conformational characteristics of the nucleic acid backbone. The base pairing of N⁷-(2-deoxy- β -D-*erythro*-pentofuranosyl)adenine (⁷A_d) with dT was the first report on the duplex formation of an N⁷-purine oligonucleotide. Previously, N⁷-(2-deoxy- β -D-*erythro*-pentofuranosyl)guanine (⁷G_d) has shown to form a duplex of considerable stability in d(⁷G-C)₆. This work will now be extended to other purine N⁷-nucleosides such as N⁷-(2-deoxy- β -D-*erythro*-pentofuranosyl)hypoxanthine (⁷I_d, **7**)⁵ and N⁷-(2-deoxy- β -D-*erythro*-pentofuranosyl)isoguanine (⁷iG_d, **9**). The phosphoramidite building blocks **1** and **4** have already been synthesized. A Studies with **5** and **6** are in progress. Now the phosphoramidites **2** and **3** are synthesized and oligonucleotides containing ⁷iG_d or ⁷I_d are prepared.

The (dimethylamino)methylidene residue was used for protection of the amino group of **9**. Compound **10** as well as the nucleoside **7** were transformed into the **4**,**4**'-dimethoxytrityl derivatives **8** and **11** under standard conditions. Also the phosphonates of the nucleosides **7** and **9** were prepared. They carry the same protecting groups as the corresponding phosphoramidites. Table 1 summarizes selected ¹³C-NMR data which were used for structural characterization.

	C-2	C-4	C-5	C-6	C-8
7 ⁵ 8 9 ⁶ 11	144.9 144.8 154.0°) 156.8°)	157.4 157.5 ^d)	114.3 114.4 102.8°) 108.5°)	154.4 154.0 156.6°) 157.0°)	141.5 141.2 141.6°) 140.0°)
	C1'	C2'	C3'	C4'	C5'
7 ⁵ 8 9 ⁶	85.9 85.5 85.5 85.7	39.4 40.7 38.6 41.8	70.3 70.2 69.3 69.8	88.0 86.0 87.9 86.0	61.2 64.0 60.5 63.7

TABLE 1.13C-NMR Chemical Shifts of Purine N7-2'-Deoxyribofuranosides a) b)

Two sets of oligonucleotides were synthesized containing either two $^7G_{d}$ - or two $^7iG_{d}$ -residues in the center of $d(T_{12})$ or replacing the dG-residues of d(TAGGTCAATACT) (Tables 2, 3). The solid-phase synthesis was performed on a ABI 392 synthesizer using the standard protocol. The coupling efficiency of the modified phosphoramidites was the same as found for the regular ones. The composition of the oligomers was confirmed by MALDI-TOF mass spectra and enzymatic composition analysis.

Next, the duplex stability of the oligonucleotides was analyzed by T_m -measurements (Tables 2 and 3). For this purpose oligonucleotides of the sequences $d(T_5XXT_5)$ and

a) Spectra measured in (D₆)DMSO rel. to SiMe₄ at room temperature.

b) From [1H,13C] gated-decoupled spectra. c) Tentative. d) Not detected.

TABLE 2. T_m -Values and Thermodynamic Data of Duplex Melting of 5'-d(TTTTTXXTTTTT) 5'-d(AAAAAYYAAAAA)^a) containing 7G_d and 7iG_d .

XX [·] YY	T _m [°C]	ΔH [kcal/mol]	ΔS [cal/mol K]	h [%]
TT AA	27		204	22
TT AA	37	-89	-281	22
GG CC	39	-90	-294	n.d.
⁷ G ⁷ G · CC	34	-84	-273	19
⁷ G ⁷ G · GG	28	-80	-262	23
⁷ G ⁷ G c ⁷ G c ⁷ G	26	-82	-274	21
⁷ G ⁷ G AA	14	-76	-266	22
⁷ G ⁷ G ⋅TT	15	-72	-251	24
GG GG	<10	n.d.	n.d.	n.d.
⁷ iG ⁷ iG · GG	30	-62	-204	20
⁷ iG ⁷ iG · c ⁷ G c ⁷ G	27	-68	-228	23
⁷ iG ⁷ iG CC	20	-84	-287	20
⁷ iG ⁷ iG AA	20	-69	-234	24
⁷ iG ⁷ iG TT	<10	-88	-313	22

 $^{^{\}rm a)}$ Measured at 260 nm in 0.1 M NaCl containing 10 mM MgCl₂, and 10 mM Nacacodylate (pH 7.0) at 5 μmol single strand concentration; n.d. : not detected.

TABLE 3. T_m -Values and Thermodynamic Data of Duplex Melting of 5'-d(TAXXTCAATACT) 5'-d(ATYYAGTTATGA) ^a) containing 7G_d and 7I_d .

XX·YY	T _m [°C]	ΔH [kcal/mol]	∆S [cal/mol·K]	h [%]
GG CC	47	-94	-292	26
GG · ⁷ G ⁷ G	37	-83	-287	26
c ⁷ Gc ⁷ G · ⁷ G ⁷ G	39	-84	-271	27
⁷ G ⁷ G - ⁷ G ⁷ G	37	-61	-196	20
GG · ⁷ I ⁷ I	30	-65	-218	23
c ⁷ Gc ⁷ G · ⁷ I ⁷ I	29	-60	-215	25
⁷ G ⁷ G - ⁷ I ⁷ I	28	-74	-246	22

a) Conditions see Table 2.

 $d(A_5YYA_5)$ were hybridized. In the case of $d(T_5XXT_5)$ X is either 7G_d , 7iG_d while Y stands for dA, dG, dT, dC or 7-deaza-2'-deoxyguanosine (c^7G_d) in $d(A_5YYA_5)$ (Table 2). In another experiment the N⁷-nucleosides were incorporated into the sequence d(ATYYAGTTATGA) and were hybridized with d(TAXXTCAATACT)(Table 3). Here, Y represents 7G_d or 7I_d and X is dG, 7G_d or 7G_d . In all cases sigmoidal melting profiles were observed from which thermodynamic data were calculated.

From the Tables 2 and 3 it is apparent that the T_m -values decrease only moderately when 7G_d is located opposite to dG or c^7G_d . As expected, a relatively high T_m -value is found for duplexes in which 7G_d is located opposite to dC. The oligonucleotides containing 7iG_d seem to form base pairs with dG or c^7G_d (Table 2). However, the enthalpic data for the duplex formation are much lower when 7iG_d is located opposite to dG compared to those containing 7G_d . In all the cases where the 7G_d is located opposite to dA or dT duplexes are less stable. A similar trend of duplex stability is found for 7G_d in both sets of oligonucleotide duplexes. It is also apparent that duplexes containing 7I_d are considerably less stable than those containing 7G_d supporting base pairing between 7G_d and dG.

According to the stabilities of the various oligonucleotide duplexes base pairing is proposed for ${}^7G_d \bullet dG$, ${}^7G_d \bullet c^7G_d$ and ${}^7G_d \bullet {}^7G_d$. Base pairs can also be considered for ${}^7iG_d \bullet dG$ and ${}^7iG_d \bullet c^7G_d$. Base pairing between ${}^7A_d \bullet dT$ and ${}^7G_d \bullet dC$ has already been reported. As it was of interest to establish structural motives for the various base pairing modes, models were constructed and inserted into the B-DNA duplex. Those

base pairs which show the best fitting are depicted below. Nevertheless, a final conclusion on the various motives can only be given after structural elucidation of such duplexes using NMR-spectroscopy or single crystal X-ray analysis.

Apart from the base pairing properties of the 7-glycosylated purines the nucleosides show strong fluorescence under alkaline conditions (NaOH, pH 12.0). Excitation of 7G_d at 282 nm results in an emission at 363 nm. Among the various purine N 7 -nucleosides the fluorescence of 7iG_d was particularly strong. While excited at 295 nm the emission maximum appeared at 361 nm.

Acknowledgments

We thank I. Münster for the measurements of the fluorescence spectra. Financial support by Boehringer Mannheim GmbH is gratefully acknowledged.

REFERENCES

- 1. Seela, F.; Winter, H. 10th International Roundtable 1992, Park City, USA.
- 2. Seela, F., Winter, H. Bioorg. Med. Chem. Lett. 1993, 3, 273.
- 3. Seela, F.; Winter, H. Helv. Chim. Acta 1994, 77, 597.
- 4. Seela, F.; Leonard, P. Helv. Chim. Acta 1996, 79, 477.
- 5. Seela, F.; Winter, H. Nucleosides & Nucleotides 1995, 14, 129.
- Kazimierczuk, Z.; Mertens, R.; Kawczynski, W.; Seela, F. Helv. Chim. Acta 1991, 74, 1742.